首页> 外文OA文献 >A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling
【2h】

A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling

机译:基于高级信号预处理和自回归建模的滚动轴承故障诊断方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study proposes a methodology for rolling element bearings fault diagnosis which gives a complete and highly accurate identification of the faults present. It has two main stages: signals pretreatment, which is based on several signal analysis procedures, and diagnosis, which uses a pattern-recognition process. The first stage is principally based on linear time invariant autoregressive modelling. One of the main contributions of this investigation is the development of a pretreatment signal analysis procedure which subjects the signal to noise cleaning by singular spectrum analysis and then stationarisation by differencing. So the signal is transformed to bring it close to a stationary one, rather than complicating the model to bring it closer to the signal. This type of pre-treatment allows the use of a linear time invariant auto-regressive model and improves its performance when the original signals are non-stationary. This contribution is at the heart of the proposed method, and the high accuracy of the diagnosis is a result of this procedure. The methodology emphasizes the importance of preliminary noise cleaning and stationarisation. And it demonstrates that the information needed for fault identification is contained in the stationary part of the measured signal. The methodology is further validated using three different experimental setups, demonstrating very high accuracy for all of the applications. It is able to correctly classify nearly 100 percent of the faults with regard to their type and size. This high accuracy is the other important contribution of this methodology. Thus, this research suggests a highly accurate methodology for rolling element bearing fault diagnosis which is based on relatively simple procedures. This is also an advantage, as the simplicity of the individual processes ensures easy application and the possibility for automation of the entire process.
机译:这项研究提出了一种用于滚动轴承故障诊断的方法,该方法可以对出现的故障进行完整,高度准确的识别。它有两个主要阶段:基于几种信号分析程序的信号预处理和使用模式识别过程的诊断。第一阶段主要基于线性时不变自回归建模。这项研究的主要贡献之一是开发了一种预处理信号分析程序,该程序通过奇异频谱分析对信号进行噪声清除,然后通过差分进行平稳处理。因此,对信号进行变换以使其接近固定信号,而不是使模型复杂化以使其接近信号。这种类型的预处理允许使用线性时不变自回归模型,并在原始信号不稳定时改善其性能。这种贡献是所提出方法的核心,而诊断的高精度是该程序的结果。该方法强调了初步噪声清除和平稳化的重要性。并且表明故障识别所需的信息包含在被测信号的固定部分中。使用三种不同的实验设置进一步验证了该方法,证明了所有应用程序都具有很高的准确性。它能够根据故障的类型和大小正确分类将近100%的故障。这种高精度是该方法的另一个重要贡献。因此,这项研究提出了一种基于相对简单程序的高精度滚动轴承故障诊断方法。这也是一个优点,因为单个过程的简单性确保了简单的应用程序以及整个过程自动化的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号